
MC event generation tutorial

Andy Buckley
University of Glasgow

RAL Advanced Graduate Lectures
15 June 2021

❖ MC generation: where theory meets experiment
➢ The fundamental pp collision, in vacuo

❖ Components of a fully exclusive SHG chain
➢ QFT matrix element sampling at fixed order in QCD etc.
➢ Dressed with approximate collinear splitting functions, iterated

in factorised Markov-chain “parton showers”
➢ FS parton evolution terminated at Q ~ 1 GeV: phenomenological

hadronisation modelling. Mixed with MPI modelling.
➢ Finally particle decays, and other niceties

❖ Today
➢ hands-on tutorial with Pythia8 and MadGraph5

■ for background principles see my lecture slides
➢ introduction to running generators and studying their output
➢ generation biasing for efficient phase-space population
➢ ME/PS merged generation with extra ME jets
➢ BSM model configuration and generation

MC generation

2

https://indico.stfc.ac.uk/event/299/contributions/1836/attachments/606/1051/go

❖ First, get your Pythia Docker container started
➢ $ docker pull hepstore/rivet-pythia
➢ $ docker run -it --rm -v $PWD:/host hepstore/rivet-pythia

❖ Pythia8: shower-hadronisation generator (SHG) with many LO processes built-in
➢ Pythia 8.3 docs: https://pythia.org/latest-manual/Welcome.html
➢ We’ll use the “main93” example interface. Open a blank command file: # nano py8-top.cmnd
➢ Add the lines:

Beams:eCM = 13000
Top:all = on
Main:writeHepMC = on

➢ And run: # pythia8-main93 -c py8-top.cmnd -o TOP -n 1000

❖ Examine the output
➢ less TOP.hepmc
➢ Run a basic physics analysis on it: # rivet -a EXAMPLE TOP.hepmc -H TOP.yoda
➢ View the histogram data: $ less TOP.yoda; # yodals -v TOP.yoda
➢ # rivet-mkhtml TOP.yoda -o /host/rivet-plots-top
➢ And point your Web browser at it, e.g. $ firefox rivet-plots-top/index.html

Generator basics

3

purple = command shell

blue = generator configs

https://pythia.org/latest-manual/Welcome.html

❖ The HepMC ASCII files are very large!
➢ They waste space, and CPU due to the writing/re-reading time
➢ Useful for debugging, though

❖ Better that we pass the events to Rivet in memory instead
➢ # nano py8-top.cmnd
➢ And change to:

Beams:eCM = 13000
Top:all = on
Main:runRivet = on
Main:analyses = MC_TTBAR,MC_JETS,MC_FSPARTICLES,MC_ELECTRONS,MC_MUONS

➢ # pythia8-main93 -c py8-top.cmnd -o TOP -n 5000
➢ # rivet-mkhtml TOP.yoda -o /host/rivet-plots-top

❖ Inspect the output
➢ Do the lepton distributions make sense?
➢ The jets?
➢ What happens to the statistics at high p

T
?

More statistics = no more event files

4

❖ Let’s make some inclusive-jet events
➢ In Pythia, this just means a pp → jj ME. Everything else comes from the PS, especially ISR
➢ It does remarkably well for that (thanks to a few tricks)
➢ But mostly we use higher-order generators for the ME nowadays. Py8 is quick, though!

❖ We start with the obvious configuration
➢ # nano py8-jets.cmnd

Beams:eCM = 13000
HardQCD:all = on
PhaseSpace:pThatMin = 10
Main:runRivet = on
Main:analyses = MC_JETS

➢ # pythia8-main93 -c py8-jets.cmnd -o JETS -n 2000

❖ View the output
➢ # rivet-mkhtml JETS.yoda -o /host/rivet-plots-jets
➢ And view: what’s happened to the p

T
 tails and 3rd, 4th jet distributions?

➢ We can improve this with ME phase-space slicing and/or enhancement

Jet-event generation

5

❖ The statistics died off at high p
T

➢ The unweighted events are asymptotically distributed like the physical dσ/dp
T

➢ ⇒ far too many low-p
T
 events for our needs! Rapidly drop below systematics threshold

➢ Simple solution: stick together several runs in orthogonal slices of ME phase-space

❖ Three slices, the top-one open-ended
➢ Add a max pT

hat to py8-jets.cmnd:
PhaseSpace:pThatMin = 10
PhaseSpace:pThatMax = 50

pythia8-main93 -c py8-jets.cmnd -o JETS0 -n 2000
➢ Then a min/max pair above that:

PhaseSpace:pThatMin = 50
PhaseSpace:pThatMax = 100

pythia8-main93 -c py8-jets.cmnd -o JETS1 -n 2000
➢ And a final min-only:

PhaseSpace:pThatMin = 100
pythia8-main93 -c py8-jets.cmnd -o JETS2 -n 1000

➢ Plot and study: # rivet-mkhtml JETS*.yoda -o /host/rivet-plots-jets

Jet-event slicing

6

❖ The statistics work better now, and the correctly xs-normalised sum is smooth
➢ We still have falling stats in each slice, though: “sawtooth” statistical error
➢ Can we “continuously slice”? Yes! Sample from pThatn dσ/dp

T
hat, with weights 1/pThatn

➢ Since LO 2→2 process, p
T

hat is unambiguous

❖ Enhanced dijet generation
➢ Enable biasing in py8-jets.cmnd:

PhaseSpace:pThatMin = 10
PhaseSpace:bias2Selection = on

pythia8-main93 -c py8-jets.cmnd -o JETSW -n 2000

➢ Pretty-printing of all methods:
rivet-mkhtml JETS.yoda:Raw:LineColor=red \
 JETS0.yoda:Slice0:LineColor=purple:LineStyle=dashed \
 JETS1.yoda:Slice1:LineColor=purple:LineStyle=dashdotted \
 JETS2.yoda:Slice2:LineColor=purple:LineStyle=dotted \
 JETSW.yoda:Enh:LineColor=orange -o /host/rivet-plots-jets

➢ Study the output. Which is better at phase-space coverage?
Compare the numbers of events generated

Jet-event enhancement

7

❖ W/Z+jets are the biggest and most CPU-consuming MC samples at the LHC
➢ Followed by ttbar, single-top, diboson, …
➢ The “classic” development lab for beyond-LO methods, because

■ Born process at 2→1 tree level
■ colour-singlet boson is unproblematic for QCD
■ vector boson: symmetry protection ⇒ small NLO corrections wrt Higgs
■ massive boson = natually “anchored” scale choices: more stable than massless jets or photons

❖ First, let’s make a Pythia8 version, then go to MG5
➢ # nano py8-zmm.cmnd

Beams:eCM = 13000
WeakSingleBoson::ffbar2gmZ = on
23:onMode = off
23:onIfAny = 13
Main:runRivet = on
Main:analyses = MC_JETS

➢ # pythia8-main93 -c py8-zmm.cmnd -o ZMM -n 5000
➢ # mv ZMM.yoda /host/Py-Z.yoda

V+jets production

8

❖ Get the MG5 image and open it in a separate terminal
➢ $ docker pull hepstore/rivet-mg5amcnlo
➢ $ docker run -it --rm -v $PWD:/host hepstore/rivet-mg5amcnlo

cd MG5_aMC_v3_1_0/
bin/mg5_aMC

➢ MG5 is a fixed-order ME generator that interfaces with Pythia’s PS etc.

❖ Generate the lowest-order jet-multiplicity sample
➢ > generate p p > mu+ mu-

> output PROC-Z
> launch
> … (enable Pythia)
> quit

➢ # cp -r PROC-Z /host/
⇒ look at diagrams in the host file browser, xsec in web browser

➢ # cd PROC-Z/Events/run_01/
⇒ look at the LHE (and HepMC) event files:
zless unweighted_events.lhe.gz

V+jets production: MG5

9

❖ We can also make higher-order MEs (here just tree-level)
➢ # bin/mg5_aMC

> generate p p > mu+ mu-
> add process p p > mu+ mu- j
> add process p p > mu+ mu- j j
> output PROC-ZJJMERGED
> quit

➢ # cp -r PROC-ZJJMERGED PROC-ZJJ
cd PROC-ZJJ
nano Cards/proc_card_mg5.dat
nano Cards/run_card.dat ⇒ set ickkw=0
bin/generate_events

➢ # cd ../PROC-ZJJMERGED
bin/generate_events

❖ What’s going on???
➢ The PS makes the different multiplicities overlap in phase-space: have to avoid double-counting
➢ CKKW(L) and MLM procedures do this by phase-space weights or cuts: we’re trying MLM on/off

V+jets production: MG5 jet-merging

10

Add a [QCD] suffix to generate a
process at QCD NLO. Slow!!

One-loop matching with MC@NLO;
loop and legs merging/matching

with FxFx

❖ Run Rivet on the (zipped) MG5 HepMC events
➢ MG5 events have lots of weights, cf. the LHE file. Incorporating scale and PDF variations

➢ But MG5 doesn’t specify a default weight, so we need to identify that by hand:

➢ # rivet -a MC_JETS --nominal-weight='MUF=1.0_MUR=1.0_PDF=247000_MERGING=0.000' \
PROC-Z/Events/run_01/tag_1_pythia8_events.hepmc.gz -H MG-Z.yoda

rivet -a MC_JETS --nominal-weight='MUF=1.0_MUR=1.0_PDF=247000_MERGING=0.000' \
PROC-ZJJ/Events/run_01/tag_1_pythia8_events.hepmc.gz -H MG-Zjj-sum.yoda

rivet -a MC_JETS --nominal-weight='MUF=1.0_MUR=1.0_PDF=247000_MERGING=45.000' \
PROC-ZJJMERGED/Events/run_01/tag_1_pythia8_events.hepmc.gz -H MG-Zjj-x.yoda

➢ And plot:
cp /host/Py-Z.yoda .
rivet-mkhtml Py-Z.yoda MG-Z.yoda MG-Zjj-*.yoda -o /host/rivet-plots-z

❖ Inspect the output

➢ See how the samples have different kinematics? And the MG5 systematic uncertainty bands?

V+jets production: analysis and comparison

11

❖ Pythia8 has several built-in models, e.g. Z’, SUSY, XD resonances…
➢ Many are steered just via Py8 parameters — see the manual
➢ SUSY in particular requires an SLHA file: use hepstore/rivet-tutorial
➢ Set up a command file with

SUSY:all = on
SLHA:file = gg_g1500_chi100_g-ttchi.slha

➢ Run and analyse

❖ MG5 is really a generator generator: more flexible
➢ ⇒ can build new MEs for ~any UFO physics model (as can Sherpa, Herwig)
➢ E.g. a dark matter model:

> import model DMsimp_s_spin1 --modelname
> generate p p > xd xd~ j

➢ etc. DM mass, coupling can be set in the “param card” = SLHA
➢ Generate and analyse

➢ More control can be imposed by fixing new physics couplings at
amplitude level e.g. NP==1 or ME-squared level e.g. NP^2==1

BSM physics generation

12

Since the MG5 conversion to use
Python3, you may need to run a

‘convert’ command on your UFO,
and re-import. The command-line will

advise you if this is the case

hepstore/rivet-tutorial is just the
rivet-pythia Docker image with a few

extra tutorial files in the work dir

❖ Thanks for your time!

❖ You now know how to run two of the most popular LHC event generators
at Born and merged/matched levels

❖ And how to set up and run any UFO new-physics model

❖ This is basically a superpower — use it wisely!

❖ And the devil is in the details: black-box mode
will only get you so far

❖ Sometimes it goes wrong, sometimes…
it’s complicated

❖ Good luck!

That’s it!

13

